Bone remodeling markers after experimental augmentation of trabecular bone defects with resorbable and non-resorbable osteoplastic materials in rabbits

Gilev M.V., Volokitina E.A., Antropova I.P., Bazarny V.V., Kutepov S.M.

Abstract


Objective
To study the effect of bone defect augmentation on the dynamics of bone remodeling markers.
Material and methods
The effect of resorbable xenoplastic material (RXM), synthetic beta-tricalcium phosphate (b-TCP), porous titanium implant (PTI) and nanostructured carbon implant (NCI) on the markers of bone remodeling (osteocalcin, OC; bone alkaline phosphatase, BALP; C-terminal telopeptide of type I collagen, CTX-1) and inflammation marker (C-reactive protein, CRP) was investigated using bone defect model in rabbits. 24 animals were divided into 4 groups (n = 6 in each group) according to the type of osteoplastic material. Control group (n = 6) was without augmentation. An impression fracture of the proximal tibia was modeled. Blood samples were taken on days 1, 3, 7, 14, 45, 90, 180 after surgery.
Results CTX-1was not detected in the control, b-TCP, PTI, and RXM groups after 90 days, but in the NCI group CTX-1 remained elevated until the end of the study. OC in the control, b-TCP, PTI groups reached a maximum at 14-45 days. No significant increase in OC was found in the NCI group. The BALP in the control group peaked at 90 days. In the b-TCP and PTI groups the concentration of BALP increased more rapidly. The dynamics of CRP in the RXM, b-TCP and PTI groups was similar to the dynamics in the control group, in the NCI group an increased level of CRP remained until the end of the study.
Conclusion
When a bone defect was augmented with both resorbable b-TCP and nonresorbable PTI, high osteogenesis activity and low osteoresorption activity were detected. The use of xenoplastic material did not reveal any advantages in comparison with surgery performed without augmentation. An increase in osteoresorption and a low level of osteogenesis were found by using NCI.

Keywords


bone remodeling markers, osteoplastic materials, augmentation, bone defects, experiment

Full Text

Galleys

PDF PDF (Русский)


DOI: http://dx.doi.org/10.18019/1028-4427-2020-26-2-222-227

Refbacks

  • There are currently no refbacks.